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Asymmetric metal catalysis represents one of the most active
areas in modern organic chemistry, and the number of novel chiral
ligands for catalytic asymmetric transformations is growing
rapidly.1 Although a few thousand chiral ligands have been
described, those which deliver enantioselectivities above 90% are
still quite rare.1c Among these compounds,C2-symmetric ones2

are of immense importance, and some of them have already been
applied in industry, for example, in the Takasago and Monsanto
processes.3 Whereas early on the use ofC2-symmetric diphosphine
ligands dominated, more and more chelating compounds with sp2-
nitrogens have been found to serve the same purpose, leading to
high enantioselectivities in metal catalyses.4 Representative
examples in this area are the semicorrins,5 bis(oxazolines),6 and
salens,7 which all have been applied in numerous catalyzed
asymmetric transformations including C-C-bond forming reac-
tions and oxidations. A few years ago we reported on the synthesis
of C2-symmetric bis(sulfoximine) (S,S)-1, which we regarded as
unusual tetradentate salen-type ligand having chiral (sulfur) atoms
at positions which inevitably are achiral in the original salen
structures.8 Tests in sulfide oxidations with cumyl hydroperoxide
as oxidant and the oxovanadium(IV) complex of (S,S)-1 as catalyst
proved successful, giving sulfoxides in high yields, although as
racemates. We now synthesized related bis(sulfoximine) (S,S)-2

and were pleased to note that its copper complex showed both
high activity and enantioselectivity in catalyzed asymmetric
hetero-Diels-Alder (HDA) reactions.9

The synthesis of (S,S)-2 starts from (S)-S-methyl-S-phenylsul-
foximine [(S)-4] which is readily available on a 100-g scale by
oxidation of thioanisole followed by imination of the intermediate
sulfoxide with sodium azide and subsequent resolution of the
resulting racemic sulfoximine with (S)-camphor-10-sulfonic acid.10,11

Our earlier attempts to prepare bis(sulfoximine) (S,S)-2 from 1,2-
dibromobenzene (3) and (S)-4 using palladium-catalyzedN-aryl
imination methodology,12 which worked well with other haloben-
zenes bearing electron-withdrawing substituents, failed under the
usual reaction conditions with Pd(OAc)2 as metal source and Cs2-
CO3 as base. However, when employing a slightly modified
protocol, which was recently developed by Diver et al. for the
bisamination ofo-dibromobenzene using 4 mol % of Pd2dba3, 8
mol % of rac-BINAP and an excess of reagents at 135°C,13 the
desired transformation occurred smoothly, yielding bis(sulfox-
imine) (S,S)-2 as a crystalline solid, which is stable to air, light,
and moisture in 70% yield (eq 1).14

Asymmetric HDA reactions between electron-rich dienes and
activated aldehydes have intensively been studied by Jørgensen
et al., who found cationic bis(oxazolinyl) (box) copper(II)
complexes to catalyze these transformations with high diastereo-
and enantioselectivity.9,15 On the basis of results of our previous
studies on the coordination behavior of sulfoximine copper
complexes,16 we began to explore the catalytic potential of (S,S)-2
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in the copper-catalyzed asymmetric HDA reaction between 1,3-
cyclohexadiene (5) and ethyl glyoxalate (6) (eq 2). The chiral
metal catalyst was prepared by simple mixing of equimolar
amounts of bis(sulfoximine) (S,S)-2 and Cu(OTf)2 in dichlo-
romethane at room temperature. To our delight we found that
using 5 mol % of this in situ catalyst, diene5 and glyoxylate
ester6 underwent smooth cycloaddition to afford HDA adduct7
in 81% yield with exceptionally high stereoselectivity (98% ee;
isolated as as a single diastereomer).

This promising result led us to further optimize the reaction
conditions in terms of temperature and catalyst loading. Table 1
illustrates some significant aspects of this study.

The reaction of 1,3-cyclohexadiene (5) and ethyl glyoxalate
(6) catalyzed by 10 mol % of the MePh-BiSOX17 copper(II)
triflate complex in dichloromethane at ambient temperature
provided the HDA-adduct7 with 99% ee in 62% yield (entry
1).18 To the best of our knowledge this is the highest asymmetric
induction that has ever been observed in this reaction. An increase
in enantioselectivity also occurred when the reaction temperature

was lowered to-5 °C (entry 3). The catalyst loading can be
reduced to 1 mol % without significant loss of enantioselectivity.
Under these conditions the reaction rate is slightly diminished,
and the reaction time is prolonged. Even with only 0.5 mol % of
the BiSOX Cu(II) catalyst the HDA reaction proceeds well, giving
7 with 98% ee in excellent yield (entry 4). Since the quality of
the substrates can affect the product yield,15b freshly prepared ethyl
glyoxalate instead of the commercially available 50% toluene
solution should be used.19 The absolute configuration of product
7, which was obtained from a catalysis with (S,S)-2 as ligand,
was determined to be 1S,3R,4R by comparison of the value of
optical rotation with the one given in the literature.15a

It is noteworthy that Jørgensen increased the enantioselectivity
in his catalysis with box Cu(II) complexes up to 97% ee by
changing the counterion from triflate (TfO-) to hexafluoroanti-
monate (SbF6-) and by performing the reaction in more polar
solvents such as nitromethane instead of dichloromethane.15,20

With the BiSOX Cu(II) system described here these additional
modifications are not necessary for achieving both excellent ee
and yield.21

Next, we examined the use of activated ketone8 in the HDA
reaction with diene5 (eq 3). As is compound7, cycloaddition
product9 is also a particularly attractive synthetic target, because
it can serve as key intermediate in the synthesis of natural products
and related compounds.22 The results of catalyses with the copper
complex of (S,S)-2 under various reaction conditions are sum-
marized in Table 2.

After a reaction time of 8 h at ambient temperature, use of 5
mol % of the BiSOX Cu(OTf)2 catalyst led to the formation of9
with 92% ee in 95% yield. By increasing the catalyst amount to
10 mol % and lowering the reaction temperature to-5 and-20
°C the enantioselectivity of the reaction was improved to 94%
and 96% ee, respectively. The highest enantiomeric excess was
found when the catalysis was performed at-40 °C for 30 h.
Under these conditions9 was isolated in 92% yield having 98%
ee. The absolute configuration of the product was determined to
be 1S,4R [in a catalysis with (S,S)-2 as ligand]. Compared to the
other catalyst systems employed in this transformation the copper
catalyst developed here, bearing the BiSOX ligand, proved
superior again.

Further studies are directed toward the expansion of the
substrate scope and the use of other chiral sulfoximines as ligands
in asymmetric metal catalysis.
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Table 1. Effects of Catalyst Amount and Temperature on the
Reaction between 1,3-Cyclohexadiene (5) and Ethyl Glyoxalate (6)
to Give HDA Adduct 7

entry
cat (S,S)-2
(mol %)

temp
(°C)

time
(h)

yielda

(%)
eeb

(%)
endo/exo

ratiob

1 10 r.t. 6 62 99 99:1
2 5 r.t. 6 61 98 99:1
3 5 -5 10 61 99 99:1
4c 1 -5 15 98 98 99:1
5c 0.5 r.t. 6 96 98 99:1

a Yield referring to isolated amount of product.b Determined by GC.
For exact separation conditions see Supporting Information.c Use of
freshly prepared ethyl glyoxalate according to ref 15b.

Table 2. Effects of Catalyst Amount and Temperature on the
Reaction between 1,3-Cyclohexadiene (5) and Diethylketomalonate
(8) to Give HDA Adduct9

entry
cat (S,S)-2
(mol %)

temp
(°C)

time
(h)

yielda

(%)
eeb

(%)

1 5 r.t. 8 95 92
2 10 -5 12 98 94
3 10 -20 18 93 96
4 5 -40 30 92 98

a Yield referring to isolated amount of product.b Determined by
HPLC. For exact separation conditions see Supporting Information.
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